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The properties of certain networks are determined by hidden variables that are not explicitly measured. The
conditional probability (propagator) that a vertex with a given value of the hidden variable is connected to k
other vertices determines all measurable properties. We study hidden variable models and find an averaging
approximation that enables us to obtain a general analytical result for the propagator. Analytic results showing
the validity of the approximation are obtained. We apply hidden variable models to protein-protein interaction
networks (PINs) in which the hidden variable is the association free energy, determined by distributions that
depend on biochemistry and evolution. We compute degree distributions as well as clustering coefficients of
several PINs of different species; good agreement with measured data is obtained. For the human interactome
two different parameter sets give the same degree distributions, but the computed clustering coefficients differ
by a factor of about 2. This shows that degree distributions are not sufficient to determine the properties of

PINs.
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I. INTRODUCTION

Physicists have recently shown that network analysis is a
powerful tool to study the statistical properties of complex
biological, technological, and social systems of diverse kinds
[1-3]. Many networks exhibit a scale-free degree distribution
in which the probability p, that a vertex is connected to k
other vertices falls as a power p;~k~”. This property is not
sufficient to completely describe natural networks because
such systems also exhibit degree correlations—the degrees
of the vertices at the end points of any given edge are not
independent [4—7]. It is not surprising that natural systems
depend on properties that do not appear explicitly in degree
distributions. In particular, protein interaction networks de-
pend on the availability of sufficient binding free energy [8]
to cause interactions to occur (i.e., links between vertices to
exist).

Caldarelli et al. [9] and Soderberg [10] proposed models
in which vertices are characterized by a fitness parameter
assigned according to a chosen probability distribution. Then
pairs of vertices are independently joined by an undirected
edge with a probability depending on the fitnesses of the end
points. Reference [11] generalized these models as a class of
models with hidden variables and presented a detailed for-
malism showing how to compute network properties using
the conditional probability (propagator) that a vertex with a
given value of a hidden variable is connected to k other
vertices. This formalism, valid for any Markovian (binary)
network, provides the generating function for the propagator,
but not the propagator itself.

The purpose of this paper is twofold. We first use a mean
field approximation to derive a general analytic formula for
the propagator, therefore finding a general approximate solu-
tion to the inversion problem. This enables one to compute
network properties without the use of a simulation proce-
dure, thereby simplifying the computational procedure and
potentially broadening the ability of scientists from all fields
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to use network theory. The validity of the method is assessed
by comparing the results of using our approximation with
published results. We then use this method to compute clus-
tering coefficients of a specific hidden variable model for
protein-protein interaction networks (PINs) from several or-
ganisms, developed by us [12], that previously had obtained
degree distributions in agreement with measured data. We
show that two models with the same degree distribution have
very different clustering coefficients.

We outline this in more detail. Section II reviews the hid-
den variable formalism and our approximate solution to the
inversion problem. We distinguish between sparse (which
have been solved in Ref. [11]) and nonsparse networks
(which are solved here). Section III studies the models of
Refs. [9,13]. Our averaging procedure is found to work well
for most situations. Our own model [12] is presented in Sec.
IV. We present an analytic result for the average connection
probability and extend the results of [12] to computing the
clustering coefficients. The final section is reserved for a
brief summary and discussion.

II. HIDDEN VARIABLE NETWORKS

We present the formalism for hidden variable models
[11]. The probability that a node has a hidden continuous
variable g is given by p(g), normalized so that its integral
over its domain is unity. This function is chosen to be an
exponential in [9,12] and a Gaussian in [13]. The connection
probability for two nodes of g,g’ is defined to be p(g,g’).
This is taken as a step function in [9,13], and a Fermi func-
tion in [12]. The two functions p(g) and p(g,g') can be
chosen in a wide variety of ways to capture the properties of
a given network. Reference [11] presents the probability gen-
erating function Gy(x) that determines p; in terms of the

generating function for the propagator, Gy(z,g), as
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Golz) = f dg p(8)Go(z,8), (1)

where

In éo(z,g)=Nfdg’p(g’)ln[l—(l—z)p(g,g’)]- (2)

The propagator Gy(k,g) giving the conditional probability
that a vertex of hidden variable g is connected to k other
vertices is given implicitly by

Golz.8) = >, 7*Gy(k.g). (3)
k=0

Knowledge of Gy(k,g) determines the conditional probabil-
ity P(k’|k) that a node of degree k is connected to a node of
degree k' [11] (as well as py), and those two functions com-
pletely define a Markovian network. Once Gy(k,g) is deter-
mined, all of the properties of the given network are deter-
mined. The most well-known example is the degree
distribution py:

Pk=f dg Px(g)Go(k,g)- (4)
0

It would seem that determining G(k,g) from Eq. (2) is a
simple technical matter, but this is not the case [11]. The
purpose of the present section is to provide a simple, ana-
lytic, and accurate method to determine G(k,g).

We obtain Gy(k,g) from Eq. (2) by using the tautology

pg.g") =p(g) +[p(g.g") - p(g)] (5)

in Eq. (2), choosing p(g) so as to eliminate the effects of the
second term, and then treating the remaining higher powers
of [p(g,g')-p(g)] as an expansion parameter. Using Eq. (5)
in Eq. (2) yields

In Go(z.) = In Go(z.g)

=In[1 - (1 -2)p(g)]"
_N(I_Z)fd, [p(g) p(s.8")]
- (1-2)p(g)
) “(1—z>"f : ,(p(g,g’>—ﬁ<g>)"
N RO\ )
(6)

In analogy with the mean-field (Hartree) approximation of
atomic and nuclear physics, we find that the second term of
Eq. (6) vanishes if we choose p(g) to be the average of

p(g.g') over p(g'):

p(g)= J dg'p(g')p(g.8"). (7)

With Eq. (7) the effects of the term of first order in
[p(g,g’)—-p(g)] vanish. We therefore obtain the result
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In éo(Z,g) =In[1-(1- Z)ﬁ(g)]N—NE %
n=2
f e )< - (1-2)p(g) @®

with the putative term with n=1 vanishing by virtue of Eq.
(7).

We treat the first term of Eq. (8) as the leading order (LO)
term and regard the remainder as a correction. The validity
of this approach can be checked by comparison with simu-
lations, or (in certain cases) with analytic results. Numerical
results for the PIN of current interest [12] indicate that the
corrections to the LO terms induce errors in p; of no more
than a few percent and that the approximation becomes more
accurate for large values of k. Therefore we use the LO ap-
proximation. Using exponentiation and the binomial theorem
in the first term of Eq. (8) leads to the result

Go ' (k,g) = (]Z)[l - PPl ©)

which is of the form of a random binomial distribution in
which the connection probability depends on the hidden vari-
able g. Equation (9) is our central new general result that can
be used for any hidden variable network. This binomial dis-
tribution has both the normal Gaussian and Poisson [Np(g)
< 1] distributions as limiting cases.

A. Sparse and nonsparse networks

Reference [11] explained the difference between sparse
and nonsparse networks. Sparse networks have a well-
defined thermodynamic limit for the average degree, while
this quantity diverges as the network size N approaches in-
finity. Reference [11] defines criteria for sparseness by point-
ing out the relevance of p of Eq. (7) in determining whether
or not a network is sparse. Given this quantity, the average
degree is

(k)= f dg p(g)p(g) = J dg f dg'p(g)p(g.g")p(g").
(10)

If p(g) is independent of N the only way to obtain a nondi-
vergent value (k) is for the connection probability to scale as
N7
Clg.g")
sparse " =
P8 =
Under the specific assumption that Eq. (11) holds, Ref. [11]
finds a very interesting result. In our notation, this amounts
to using Eq. (11) in Eq. (2) and taking the limit that N ap-
proaches infinity. Then

sparse network 7 [11]. (11)

G?)parse(z’g) =€Xp(Z— 1) J dg/p(g’)C(g’g’) (12)

This shows that the Poisson limit of Eq. (9) is obtained for
the very special case of sparse networks in which the con-
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nection probability scales as N~'. None of the models of
interest here [9,12,13] are sparse, so it is our present result
(9) that is widely applicable.

B. General networks

Turning to the use of the propagator, we obtain the degree
distribution as

Pi= J dg p(g)G(k,g) = f dg p(g)GOk,g).  (13)

This expression can be thought of as averaging a binomial
distribution over the hidden variable and is a natural gener-
alization of classical graph theory. A similar expression for
P has been obtained, in the Poisson limit, in Ref. [15]. In
that work, p, is presented as an integral of the Poisson dis-
tribution for p(g) multiplied by the “P representation” of a
density matrix. Comparing Eq. (9) with the result (3) of [15]
shows that our propagator is proportional to the P represen-
tation, essentially our p(g). Reference [15] shows how, under
certain assumptions, to use p(k) to determine the P represen-
tation. Our method allows underlying network properties, de-
noted by p(g) and p(g,g’), to predict various network prop-
erties.

The clustering coefficient measures transitivity [3]: if ver-
tex A is connected to vertex B and vertex B to vertex C, there
is an increased probability that vertices A and C are con-
nected. In graph theory, the clustering coefficient c(k) is the
ratio of the number of triangles to the number of pairs, com-
puted for nodes of degree k. Reference [11] shows that

(k) = pik f dg p()Go(k.g)c(g). (14)

B ) ’ ple)

(15)

Our calculations replace G, by GE)LO) of Eq. (9).

II1. SIMPLE MODELS AND ANALYTIC RESULTS

One way to verify the LO approximation is to show that it
reproduces analytic results for previously published models.
We consider the models of [9,13] in this section. In both of
these models p(g,g’) is taken as a step function (the zero-
temperature limit of our model):

r(g.8")=0(g+g" — ). (16)

The two models differ in their choice of p(g), but the use of
Eq. (16) allows one to obtain compact general expressions
for the generating functions Gy(z,g), Go(k,g). ps. and c(k).
We present these first and discuss specific details of the in-

dividual models in separate subsections.
The use of Eq. (16) in Eq. (2) yields
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In Gy(z,8) = N(®(,U« - g)f dg'p(g') +0(g - M))ln(z)
g

=Np(g)In(z), (17)

so that

Go(z,8) =27, (18)

It is interesting to observe that Eq. (8) reduces to the above
result. This is because powers of p(g,g')"=p(g,g’) for Eq.
(16), so that the integration appearing in Eq. (8) leads to an
expression that is a function of N,z,p. Then the use of the
binomial theorem allows the second term of Eq. (8) to be
expressed as a summable power series in p which ultimately
leads to the result Eq. (18).

If we follow [11] and treat k as a continuous variable
(which requires large values of k) we find

Go(k,g) = 8(k — Np(g)) (19)
_ 3g—gn(k) 20)
N|p'

where gy(k) is the solution of the equation

k=Np(g). (21)

Note that, for k=N, gy(k) can take on any value greater than
. The result Eq. (19) is the same as Eq. (34) of [11], but
written in a more compact form. The use of Eq. (19) in Egs.
(13) and (14) yields the results

p(gn(k))

= R 22
PE= N7 (an k)] (22)
I eN )

k)y=—"7"". 23
W= 55 (exo) 29

Model of Caldarelli ef al. [9]

This model is defined by using p(g)=exp(-g), but we
generalize it to take the form

pr(g) =N exp(=\g). (24)

Reference [11] works out this model using the Green’s func-
tion formalism. Our purpose here is to compare the results of
our averaging approximation with their results. For this
model the average interaction probability p(g) is given by

p(g)= j dg'Nexp(-=N\g")O(g+g" — )
0

=0(g-w) +0O(u—-glexp[-AMu-g)]. (25)

Then our approximation Eq. (13) for the degree distribution
Py 1s given by
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pe= () [ den evoorgpenstiniu—on

X{1 —exp[- Nu—g) "™ (26)
Define the integration variable t=exp[-\(u—g)] so that

N Var
Pi= (k )e_)"‘ t—zt"(l -V =M, (27)
)

pk>1=(N> _M(F(N+ 1-KI(k-1)

k)¢ T'(N)
~B, (k= 1.N+1 —k)), (28)
1-1)V
pk:l =Ne_)\’u( 0) 2F](1,N;N+ 1,1 - to), (29)

where ,F' is the confluent hypergeometric function and B, is
the incomplete Beta function (and with 7y=1 the Beta func-
tion):

B.(a,b) = f dr 1 '(1-0""', By(a,b) =B(a,b).
0

(30)
Consider the case

1<k, Ap=10 (31)

(the latter is typical of our biological model) so that the
second term of Eq. (28) can be neglected. Evaluating the
remaining Gamma functions gives

N
k(k—1)

pr=e™M (32)
Reference [11] computes the degree distribution for this
model in an analytic manner, using the approximation Eq.
(19) in which k is treated as a continuous variable and there-

fore “is expected to perform poorly for small values of k.”
The result of [11] (prS) is

N
p,]:’PS = e_)‘”“ﬁ +e M8k =N) (33)

which corresponds to agreement (for k # N) within the stated
domain of accuracy of Ref. [11]. The confluence of Egs. (32)
and (33) provides a verification of the accuracy of the aver-
aging approximation.

The results for k=N seem to disagree, so we examine this
more closely. Use Eq. (18) directly to obtain the generating
function Go(z) as Go(z)=Jdg p(g)z"7®). One obtains a result
ZV for all values of g (g>pu) such that p(g)=1. Using this
generating function yields the result

Pi=N= f dg p(g)O(g— ). (34)

The specific value of the integral depends on the choice of
p(g), but the result is a finite number for any choice of p(g)

PHYSICAL REVIEW E 75, 051910 (2007)

TABLE 1. Parameters obtained in Ref. [12].

Species N A M

H. pylori 732 0.88 7.06
P. falciparum 1310 0.93 7.77
S. cerevisiae 4386 1.18 7.94
C. elegans 2800 1.29 8.19
D. melanogaster 2806 1.53 8.89
Human [21] 1494 0.64 10.6
Human [22] 1705 0.67 10.2

that satisfies the normalization condition that its integral over
its domain is unity. Thus we believe that the correct result of
using the propagator [Eq. (34) of [11] in their Eq. (11)] is

N
PPt =eMos (35)

instead of Eq. (33), which is in agreement with our result.

Our approximation works very well in reproducing the
computed clustering coefficient of [11]. In particular, we
evaluate c(g) of Eq. (15) to find that

wul2
f exp(- )G (k,g)
0

c(k) = L(

Pk

+ f ' exp(- g)Gém)(k,g)(zg—wl)). (36)

w2

Numerical evaluation of this approximate expression accu-
rately reproduces the result of Fig. 3 of Ref. [11]. Thus our
mean field approximation is accurate for both our model [12]
and the model of Ref. [9],

IV. PROTEIN-PROTEIN INTERACTION NETWORK
MODEL OF SHI et al. [12]

Our principal application is to the the PIN of Ref. [12].
This model is based on the concept of free energy of asso-
ciation. For a given pair of proteins the association free en-
ergy (in units of RT) is assumed to deviate from an average
value a number contributed by both proteins additively as
g+g'. This is a unique approximation to first order in g and
g'. Thermodynamics and the assumption that the interaction
probability is independent of concentration allow us to write

plg.g')=1/(1+e+s7¢), (37)

which reduces to a step function in the zero-temperature
limit, but otherwise provides a smooth function. Increasing
the value of u weakens the strength of interactions, and pre-
vious results [12] showed the existence of an evolutionary
trend to weaker interactions in more complex organisms. The
probability that a protein has a value of g is given by the
probability distribution
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0 5 10 15 20
g

FIG. 1. (Color online) Average connection probability A=1, u
=10. Solid (red), result of Eq. (40); dashed (blue) (containing the
step function), result of Eq. (25). The approach to unity is smooth
for Eq. (40).

A
p)\(g) = _e_)\g’ -1= )\g S+, (38)
e

where the positive real value of A governs the fluctuations of
g. We previously chose the species-dependent values of A
and u so as to reproduce measured degree distributions ob-
tained using the yeast two-hybrid method that reports binary
results for protein-protein binding under a controlled setting
[16]. Those parameters are displayed in Table I. The impact
of the parameters N and u is explained in Ref. [12] and
displayed in Fig. 3 of that reference. Increasing the value of
N\ causes a more rapid decrease of p;—the slope of p; in-
creases in magnitude. Increasing the value of u decreases the
magnitude of p, without altering the slope much for values

PHYSICAL REVIEW E 75, 051910 (2007)

of k greater than about 10. The ability to vary both the slope
and magnitude of p, gives this model flexibility that allows
us to describe the available degree distributions for different
species.

We obtain an analytic form for p(g) [Eq. (7)] of this
model. Given Egs. (38) and (37) we find an analytic result:

(g N)=F (LN + Li—exp(pu — g)), (39)

where , I, is the confluent hypergeometric function. The spe-
cial case A=1 yields a closed form expression

Di(g) =es#In(1 +e#7%). (40)

A smooth average connection probability is obtained in con-
trast with the result of the sharp cutoff model Eq. (25). This
shown in Fig. 1.

It is useful to define the variable

§=exp(u-g) >0, (41)
and note that an integral representation [14]
1
SF (N N+ 15— §) = xf dr 1+ &) (42)
0

is convenient for numerical evaluations.

Knowledge of the propagator Eq. (9) allows us to com-
pute the clustering coefficients of diverse species. The result-
ing degree distributions of p; (shown for the sake of com-
pleteness) and the newly computed clustering coefficients
c(k) for the yeast S. cerevisiae [17], the worm C. elegans

FIG. 2. (Color online) Degree
distributions p; and clustering co-

efficients C(k) of diverse species.
Degree distributions p;: The solid

(red) curves are derived from the

-2|

pk10
10"

C.elegans

LO theory; the black dots are the
results of experimental data as ref-
erenced in the text; the small
(blue) circles are the results of a
numerical simulation using the
procedure of [12]. Clustering co-

efficients C(k): The solid (red)

curves are derived from the LO

10% D. melanogaster

theory; the small (blue) dots are
the results of a numerical simula-
tion using the procedure of [12];
the heavy (black) dots represent
» the measured data.

10
D. melanogaster
10° 10' 10° 10°
Degreek

10’

Degreek
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10
10"
pkw‘z
10-3 . -. ~ . ;
Human (Stelzl et. al.)
10
10° 10’ 10°
(a) Degree k
(]
= 4 Rual
~~~~~~~ S * Stelzl
10"
= 4 * AAA“A AAAA‘ A
% . > ° AA N A 7Y
22| ” e :.A AA. A a
10 . e® o LS & ‘.A 5
... .n~ LTI o
L]
10-3 ® ° G ‘A
10° 10’ 10°
(b) Degreek

FIG. 3. (Color online) Human degree distribution py; the solid
(red) curve is obtained using both set A, N=0.67, u=10.6, and set
B, A=0.94, ©=8.3. The black dots represent the experimental data.
The data set is that of [21], but nearly identical data are obtained
from [22]. Human cluster coefficient ¢(k): The solid (red) curve is
computed using set A, A=0.67, u=10.6; and the dashed (green)
using set B, A=0.94, u=8.3. Measured human clustering coeffi-
cients are from [21] triangles (blue) and [22] heavy dots (pink).

[18], and the fruit fly D. melanogaster [19] are shown in Fig.
2. The parameters \ and w are those of [12], so the calcula-
tions of the clustering coefficients represent an independent
major prediction of our model. Results of numerical simula-
tions and our analytic procedure are presented. The excellent
agreement between the two methods verifies the LO approxi-
mation. More importantly, the agreement between our calcu-
lations and the measured clustering coefficients is generally
very good, so our model survives a very significant test. This
bolsters the notion that the properties of a PIN are deter-
mined by a distribution of free energy. The clustering coef-
ficient for yeast drops rapidly for large values of k (where
statistics are poor), a feature not contained in our model.

It is worthwhile to compare our model with that of [13].
That work chooses a Gaussian form of p(g), based on hydro-
phobicity, and a step function form of p(g,g’), and is applied
only to yeast. We found [12] that p; of [13] is scale-free only
for a narrow range of parameters, and we could not repro-
duce the data for diverse species using that model.

The human interactome is of special interest. Figure 3(a)
shows the human degree distributions computed with two
sets of parameters, one from Ref. [12] (Table 1) and the other
using values of A=0.94, ©=8.27 shown in the caption. The
degree distributions are essentially identical, so only one
curve can be shown. Each is approximately of a power law
form and each describes the measured degree distribution

PHYSICAL REVIEW E 75, 051910 (2007)

very well [20]. Calculations of degree correlations allows
one to distinguish the two parameter sets. Figure 3(b) shows
that the cluster coefficients differ by a factor of 2. We find
that c(k) decreases substantially as A increases. The increase
in A reduces the allowed spread in the value of g and reduces
the value of the integrand of Eq. (14). It is interesting to note
that the two existing measurements of the human c(k) differ
by a factor of about an order of magnitude, with the mea-
surements of Ref. [22] giving much smaller values than
those of [21]. The results of [21] are closer to our computed
c(k) results for N\=0.94, ©=8.3. In contrast with the results
for other species, our c(k) lie significantly above the data.
However, the two data sets disagree substantially (by a factor
of as much as 100 for certain values of k), and both show a
clustering coefficient that is generally significantly smaller
than those of the other species. Several possibilities may ac-
count for the discrepancies between these two measurements
of ¢(k) in humans and also for the differences between our
model predictions and the experimental results. (i) The hu-
man studies sample a limited subset of links of the complete
network and this could bias the results. (ii) The human pro-
tein subsets used in the two studies differ. (iii) The human
interactome is truly less connected than that of other species.
This demonstrates the importance of measuring degree cor-
relations to determine the underlying properties of the net-
work. The current model and these considerations suggest
the need for better design of future PIN studies that will
include not only other species, but also comparisons between
the PINs of different organs of a given species. Furthermore,
comparisons between normal and malignant tissues could
also be very fruitful.

V. SUMMARY AND DISCUSSION

In summary, this work provides a method to obtain the
properties of hidden variable network models. The use of the
approximation Eq. (7), used to obtain the propagator Eq. (9),
provides an excellent numerical approximation to exact re-
sults for the models considered here. If necessary, the
method can be systematically improved through the calcula-
tion of higher-order corrections. Our principal example is the
PIN of Ref. [12]. Not only does the use of Eq. (9) provide an
accurate numerical result, but the model correctly predicts
the clustering coefficients of most species. For the human
interactome, two different parameter sets yield nearly the
same degree distribution but very different clustering coeffi-
cients, showing the importance of measuring degree correla-
tions to determine the underlying nature of the network.
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